
1

PeRColate
A collection of synthesis, signal processing, and video objects

(with source-code toolkit)
for Max/MSP/Nato

v. 1.0b3

Dan Trueman R. Luke DuBois
dan@music.columbia.edu luke@music.columbia.edu

Computer Music Center
Columbia University

September, 2001

Introduction

PeRColate is an open-source distribution of a variety of synthesis and signal processing
algorithms for Max, MSP and Nato. It began around a (partial) port of the Synthesis
Toolkit (STK) by Perry Cook (Princeton) and Gary Scavone (Stanford CCRMA). Like
the STK, it provides a fairly easy to use library of synthesis and signal processing
functions (in C) that can be wired together to create conventional and unusual
instruments. Also like the STK, it includes a variety of precompiled synthesis objects,
including physical modeling, modal, and PhISM class instruments; the code for these
instruments can serve as foundations for creating new instruments (one example, the
blotar~, is included) and can be used to teach elementary and advanced synthesis
techniques. Given its STK heritage and educational function, PeRColate is largely un-
optimized. Since its first release, PeRColate has come to include many more objects not
from the STK; some are from RTcmix and others are our own evil creations, designed to
crash your computer, but only after making some kind of interesting sound. In addition, a
library of PeRColate Nato video processing objects has been created, to munge up your
video along with your audio.

Distribution and Support

PeRColate is freely distributed and largely unsupported (please read the software license
in the README that comes with the distribution for specifics). We welcome bug reports,
but make no promises to fix them. Many, many bugs from the original version have been
fixed. Phew. Source-code includes some Codewarrior 6.0 projects, though it is it likely
that some of the access paths will have to be updated to match your directory structure.
Many of the synthesis algorithms are protected by various patents, mostly by Yamaha

2

and Stanford. For those who are interested, there is an STK mailing list for discussion of
various aspects of the STK:

http://www-ccrma.stanford.edu/CCRMA/Software/STK/maillist.html

PeRColate and STK are quite similar, but there are many differences in implementation,
so don’t expect much help from the list for specific implementation issues (or anything
else, for that matter).

The current version of the PeRColate distribution, as well as revision notes (when they
happen) and this document, are available at:

http://music.columbia.edu/PeRColate

Installation

PeRColate should unstuff into a folder with colored subfolders. The two folders labeled
‘Hot’ (which is normally a shade of red) are the only two you need to keep if you don’t
care about the source code that comes with the distribution. The folder labeled ‘Cool’
(light blue) is the master source code folder. The CodeWarrior projects we’ve included
in the source code folder should compile provided you reset the search paths to include
the relevant files from the Max, MSP, and/or Nato development kits.

The two ‘Hot’ folders, PeRColate_objects, and PeRColate_help, should be installed in
your externals folder and your max-help folder, respectively.

Inside the distribution folder is a Max patch called PeRColate overview, which is a
master index of sorts for the objects included in the current collection. Opening it up is a
great place to start. If you’re running Max version 4, you can place it in the
:patches:extras folder of your Max distribution for easy access.

MSP users who don’t own a Nato license (and Nato uses who don’t own an MSP license)
will not be able to use those objects which are written for systems they don’t have
installed. Attempting to use those objects (or open their help files) will result in harmless
errors being printed in the Max window.

Object Classes

PeRColate is a collection of 63 objects, and the number seems to be getting larger by the
day. To make your (and our) lives easier, we’ve divided the objects into eight categories,
defined below.

Physical Models
Physical modeling is a class of sound synthesis based on the actual physics of musical
instruments. All of the models here are waveguide models, which use delay lines and
reflection coefficients to simulate the waveguide properties of flute bores and strings.
Included in this set is a new instrument, the blotar~, which is a hybrid of the flute,
electric guitar (see Sullivan), and mandolin models. Besides being insanely fun, the
blotar~ illustrates how the source-code functions of PeRColate can be used to create new

3

instruments; compare the flute~ and blotar~ code, and you will see. Also, the bowedbar~
model is an interesting combination of waveguide and modal synthesis techniques (see
Essl and Cook).

Modal Synthesis
This class of synthesis is inspired by various struck-bar instruments. All three instruments
(marimba~, vibraphone~, and agogo~) feature 4 strong resonances, modeled here by
biquad filters.

PhISM
Physically Inspired Sonic Modeling. These are totally cool. Lots of little things banging
into each other. Shakers, water drops, bamboo wind chimes (See Cook, 1996, 97). The
course code for these is a bit messy, but so are the sounds, so it’s appropriate.

MaxGens
These are ports of some of the makegen() commands from Real-Time Cmix (Garton and
Topper, 1997). They are Max objects that simply evaluate some basic synthesis and
signal processing functions given a list input of parameters, and should look vaguely
familiar to users of synthesis languages descended from Music 4 (such as Cmix and
Csound). They are designed to be used either with the table / multislider / coll objects or
with peek~, and generate harmonic wavetable functions (Gen9 / Gen10), chebyshev
polynomial equations (Gen17), random number distributions (Gen20), breakpoint
functions (Gen7, Gen9, and Gen24), and hamming / hanning windows (Gen25). You can
check out the RTcmix link (below, in the references) for more information.

SID
Synthesis Isn’t Dead (it just sounds that way?). This is a collection of Luke’s
idiosyncratic objects for making some neat sounds with extremely simple signal-
processing techniques (see the source code to see just how simple). As a note, almost all
of these objects work with signals only (I haven’t implemented multiple dsp perform
methods to allow for floats in the inlets yet), so most of your control interfaces will at
some point have to turn into signals in order for these objects to work. A brief run-down
on the current objects:

• absmax~ takes two signals and outputs the one which is farthest from zero.
• absmin~ takes two signals and outputs the one which is nearest to zero.
• chase~ is a three-way signal comparator, checking two signals against a third

and outputing the closest and farthest as output signals.
• escal~ is a rounding object for signals, which depending on how you

configure it will turn your floating point signals into integer signals, which is
useful for opening gates, creating step sequencers, etc.

• flip~ is based on one of the ugens in James McCartney’s SuperCollider
language (McCartney, 1996), which wraps a carrier signal around a modulator
signal if the absolute value of the carrier exceeds the absolute value of the
modulator. Its useful for creating analog-ish distortion effects.

• jitter~ randomly varies an input signal by a small amount. This object is very
useful for exciting the PhISM instruments, some of which need to have their
parameters being varied regularly in order to make sound (see the help files
for the PhISM objects for details).

• klutz~ reverses the order of samples in each vector, making some very
unpleasant (but potentially useful) sounds.

4

• random~ is an audio-rate random number generator with a variable positive
range. You can use this object as a substitute for noise~ in some situations, or
with escal~ to generate random signal-rate integers.

• terrain~ is a wavetable scanner much like the wave~ object, except that it
works in fixed ‘frames’ which are set in samples, and it has a second inlet that
controls the wave-terrain position as the object ‘scans’ from the first frame to
the last.

• waffle~ is like gate~ with a variable threshold for which outlet the main signal
is outputted (see the help file for details). You can use waffle~ to do a lot of
silly things, from audio-rate panning to fft/ifft spectral crossovers.

• weave~ is a subharmonic oscillator that outputs pwm based on a count of
zero-crossings of the input signal. If used with very clean signals it can make
for a very low-latency pitch-tracking synthesizer.

Note: some of the SID objects have been effectively replaced by objects in MSP2.
We’ve removed the %~ object, for example. The help files for the SID objects
will note where there is an MSP2 object which does more-or-less the same thing.

Random DSP
These are a collection of signal processing objects that Dan uses in performance. It
includes:

• the munger~: a granulizing delay-line. Takes a signal in and spits out a stereo
signal of little (or big) grains, transposed, backwards/forwards, enveloped
(sorta), with nifty pitch sieves to play pretty chords. The maximum number of
voices is limited only by your CPU (up to some very high hardwired limit),
and can be changed smoothly while running. A maximum delay-length is set
with the argument, and the working delay-length can be swept smoothly.
Check out the help file, which actually explains what most of the parameters
mean. Good thing, because I keep forgetting.

• the scrubber: a scrubbing delay-line. Really simple, and almost stupid. Takes
a signal in, which you can scrub forward and backwards. To avoid clicking,
scrub~ uses a silly scheme which divides the delay line into three buffers.
Basically, scrub~ records into one buffer, while scrubbing through another;
when the record buffer is full, the play head jumps to the record buffer (with
some amount of overlap), and the record head moves to a third buffer. Each
time the buffers switch, scrub~ uses a ramp to record into the new buffer to
avoid clicks. Users can now sweep the delay length, the amount overlap when
switching buffers, and the ramp length when recording. These new parameters
make scrub~ a *much* more interesting object than in the original release.
Try changing the delay-length while scrubbing with extremely high rates.
Silly fun.

• gQ~: a really really nice filter (actually, a biquad with fancy coefficients) for
doing equalization. Unlike most EQ filters, gQ completely decouples the
primary parameters (center frequency, bandwidth, gain), making it easy to
handle. This is from Dan’s SGI application of the same name (see link below).
gQ~ now accepts an argument that establishes a number of filters in series, all
of which are independently controllable. Check out the little subpatch in the
gQ~ help file which makes cool use of the great new Max4 LCD object.

• dcblock~: yep, that’s what it does. It’s good to put these before things like the
munger and scrub, to avoid ugly clicking, unless you like clicking.

• more coming soon.....

5

Luke’s Random Stuff
These objects are bits an pieces from Luke’s collection of useful things. They include
signal rate objects to convert MIDI note values to and from frequency (mtof~/ftom~), an
abstraction to prevent dsp chain feedback loops (pause~), and a little object that prints
things into the Max window (post).

PeRColate Nato
These objects are a collection of image processors for the Nato extensions to Max. They
include:

• 242.cga: does channel-by-channel bit quantization on an image.
• 242.colorspace: implements Rafael Santos’ toolkit for converting to and from

alternate colorspaces.
• 242.constrain: constrains the rgb ranges of an image within (or outside of)

user-configurable boundaries.
• 242.cutout: a simple 2-source image mask.
• 242.eclipse: Luke’s infamous meta-imaging algorithm.
• 242.eclipse02: a 2-source version of 242.eclipse.
• 242.eclipse03: a variation on the 242.eclipse theme, with threshold tinting

added.
• 242.fromage: does simple linear wipes between two images.
• 242.imgmatrix: an image matrix and router object optimized for use with the

matrixctrl Max user-interface external.
• 242.keyscreen: a three-source patchable chroma keyer.
• 242.modgain: a channel gain control with wraparound.
• 242.rene: a three-source gradated keyer written for Rene Beekman.
• 242.rgbavg: an idiosyncratic pixel averaging filter.
• 242.rgbavg02: a 2-source version of 242.rgbavg.
• 242.rgbseek: searches an input image for a specific color, allowing you to

trigger Max events.
• 242.traffic: a tristimulus color tinting implementation that allows you to tint

an image using a 3x3 coefficient grid.

References

G. Essl and P. Cook, “Banded Waveguides: Towards Physical Modeling of Bowed Bar
Percussion Instruments,” Proc. of the International Computer Music Conference, Beijing,
October, 1999

P. R. Cook, “Physically Informed Sonic Modeling (PhISM): Percussive Synthesis,” Proc.
of the International Computer Music Conference, Hong Kong, Sept. 1996.

P. R. Cook, “A Meta-Wind-Instrument Physical Model, and a Meta-Controller for Real
Time Performance Control,” International Computer Music Conference, San Jose, Oct.,
1992.

P. R. Cook, “Physically Inspired Sonic Modeling (PhISM): Synthesis of Percussive
Sounds,” Computer Music Journal, Volume 21, Number 3, September 1997.

6

P. Cook and G. Scavone, “The Synthesis ToolKit (STK), Version 2.1,” Proc. of the
International Computer Music Conference, Beijing, October, 1999.

R. L. DuBois, “RTcmix Online Documentation.” http://www.music.columbia.edu/cmix

B. Garton and D. Topper, “RTcmix – Using CMIX in Real Time,” Proc. of the
International Computer Music Conference, Thessaloniki, September, 1997.

J. McCartney, “SuperCollider: a new real-time synthesis language,” Proc. of the
International Computer Music Conference, Hong Kong, September, 1996.

G. Scavone and P. R. Cook “Real-time Computer Modeling of Woodwind Instruments,”
Proceedings of the International Symposium on Musica Acoustics, Acoustical Society of
America, Woodbury, NY, 1998

C. R. Sullivan, “Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar
Timbres with Distortion and Feedback,” Computer Music Journal, Volume 14, Number
3, Fall 1990.

D. Trueman, “gQ,” http://www.music.princeton.edu/~dan/gQpage/gQ.html

Object Index

242.cga channel-by-channel quantization.
242.colorspace colorspace converter.
242.constrain color range constrain object.
242.cutout 2-source rectangular mask.
242.eclipse meta-imaging.
242.eclipse02 meta-imaging (2-source).
242.eclipse03 meta-imaging with threshold inversion.
242.fromage cheesy 2-source wipes.
242.imgmatrix image switcher / router.
242.keyscreen 3-source chroma keyer.
242.modgain wraparound gain control.
242.rene gradated chroma keyer.
242.rgbavg pixel averaging filter.
242.rgbavg02 pixel averaging filter (2-source).
242.rgbseek color searching.
242.traffic tristimulus color tinting.
absmax~ outputs the farther from zero of two signals.
absmin~ outputs the nearer to zero of two signals.
agogo~ modal synthesis agogo model.
bamboo~ bamboo wind-chime model.
blotar~ hybrid flute/electric guitar model.
bowedbar~ model of a bowed percussion bar.
bowed~ bowed string resonance model.
brass~ generic brass physical model.
cabasa~ cabasa shaker model.
chase~ compares two signals against a third.

7

clar~ clarinet physical model.
dcblock~ dc-bias remover.
escal~ signal rounder.
flip~ signal wraparound / inverter.
flute~ flute physical model.
ftom~ frequency to MIDI conversion.
gen5 exponential breakpoint function generator.
gen7 linear breakpoint function generator.
gen9 computes a sinusoidal wavetable.
gen10 computes a harmonic wavetable.
gen17 solves chebyshev polynomials.
gen20 random function generator.
gen24 scalable breakpoint function generator.
gen25 hamming/hanning function generator.
gQ~ stereo filter.
guiro~ guiro model.
jitter~ signal randomizer.
klutz~ abuses signal vector ordering.
mandolin~ mandolin physical model.
marimba~ modal struck marimba model.
metashaker~ interface to the seven main PhISM models.
mtof~ MIDI to frequency conversion.
munger~ granulating delay-line.
pause~ prevents dsp chain feedback loops.
plucked~ plucked string model.
post prints anything in the Max window.
random~ audio-rate random number generator.
scrub~ delay-line scrubber.
sekere~ sekere model.
shaker~ maraca shaker model.
sleigh~ sleighbells model.
tamb~ tambourine model.
terrain~ simple linear wave-terrain model.
vibraphone~ vibraphone model (modal synthesis).
waffle~ signal crossover.
weave~ sub-harmonic oscillator.
wuter~ water droplet model.

